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Abstract— Paths with loops, even transient ones ,can pose 
significant stability problems in networks. Some earlier 
approaches like Shortest path routing (Dijkstra),Flooding, Flow-
based routing, Distance vector routing(OSPF),Link state 
routing(Bellmen-Ford),Hierarchical routing, Broadcast routing, 
Multicast routing have problems maintaining the balance 
between node delays and link delays. We present a new 
algorithm, Distributed Path Computation with Intermediate 
Variables (DIV) that guarantees that no loops, transient or 
steady-state, can never downgrade network dynamics. Besides 
its ability to operate with existing distributed routing algorithms 
to guarantee that the directed graph induced by the routing 
decisions stays acyclic by handling  multiple overlapping 
updates and packet losses and frequency of synchronous 
updates, and provably outperforms earlier approaches in 
several key metrics. In addition, when used with distance-vector 
style path computation algorithms, the main drawbacks of 
Distance Vector are limited scalability due to slow convergence 
time, bandwidth consumption and routing loops. DIV also 
prevents counting-to-infinity; hence further improving 
convergence. Simulation quantifying its performance gains is 
also presented. 
Keywords— DIV, Distance-vector routing, loop-free routing, 
flow-based routing 
 

I. INTRODUCTION 
The multiple autonomous computers that communicate 
through computers is called Distributed computing.In this, 
the systems interact with each other to reach the destination. 
The computer program that runs in the distributed program 
and distributed programming. This will solve the 
computational problems which refer to Distributed 
computing. Many routing protocols have been proposed for 
MANETs, e.g., DSDV and OLSR. In both approaches, nodes 
choose successor (next-hop) nodes for each destination based 
only on local information, with the objective that the chosen 
paths to the destination be efficient in an appropriate sense—
e.g., having the minimum cost. 
Inconsistent information at different nodes can have dire 
consequences that extend beyond not achieving the desired 
efficiency. Of particular significance is the possible formation 
of transient routing loops,1 which can severely impact 
network performance, especially in networks with no or 
limited loop mitigation mechanisms, e.g., no Time-to-Live 
(TTL) field in packet headers or a TTL set to a large value. 
where a routing loop often triggers network-wide congestion. 
The importance of avoiding Transient  
routing loops remains a key requirement for path computation 
in both existing and emerging network technologies, e.g., see 

[1] for recent discussions, and is present to different extents 
in both link-state and distance-vector algorithms. 
 Link-state algorithms (e.g., OSPF [2]) decouple information 
dissemination and path computation, so that routing loops, if 
any, are short-lived, but the algorithms overhead  is high in 
terms of communication (broadcasting updates), storage 
(maintaining a full network map), and computation  
(Changes anywhere in the network trigger computations at all 
nodes). By combining information dissemination and path 
computation, distance vector algorithms (cf. RIP [3], EIGRP 
[4]) avoid several of these disadvantages, which make them 
attractive, especially in situations of frequent local topology 
changes and/or when high control overhead is undesirable. 
However, they can suffer from frequent and long lasting 
routing loops and slower convergence (cf. the counting-to-
infinity problem [5]). Thus, making distance-vector based 
solutions attractive, calls for overcoming these problems.  
 

II.     BACKGROUND WORK 
ROUTING LOOPS AND COUNTING-TO-INFINITY 
We begin our discussion with a simple classical example of a 
routing loop and counting-to-infinity 
which illustrates that these problems can occur quite 
frequently as they neither require complex topologies nor an 
unlikely sequence of events. Consider the network shown in 
Fig. 1(a). In this figure, the nodes compute a shortest path to 
the destination D. The cost of each link is shown next to the 
link and the cost-to-destination of the nodes are shown in 
parenthesis next to the node. We assume that nodes use 
poison reverse; i.e., each node reports an infinite cost-to-
destination to its successor node. Thus, node C believes that 
node A can reach the destination at a cost of 3 whereas node 
B cannot reach the destination since node B reported a 
distance of infinity to node C. 

 
Fig. 1. A simple example of counting-to-infinity problem 
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Now suppose that the link between nodes C and D goes 
down, as shown in Fig. 1(b). Node C detects this change and 
attempts to find a new successor. According to the 
information node C has at that moment, node A is its best 
successor. So node C chooses node A as its successor, reports 
a distance of infinity to node A and distance of 6 to node B. 
As Fig. 1(b) shows, a routing loop has been created due to 
node C’s choice of successor. To see how counting-to-
infinity takes place in this example, note that due to poison 
reverse, node B believes that the destination is unreachable 
through node A. Thus, when it receives the update from C 
containing C’s new cost-to-destination as 6, node B simply 
changes its own cost-to-destination to 7 keeping node C as its 
successor, reports unreachability to node C and its new cost, 
7, to node A . This way, each node increases its cost to D by a 
finite amount each time. So, unless a maximum diameter of 
the graph is assumed (e.g., it is 6 in RIP) and the destination 
declared unreachable once the cost reaches that value, the 
computation never ends. 
 
A. The Common Structure 
The primary challenge in avoiding transient loops lies in 
handling inconsistencies in the information stored across 
nodes. Otherwise, simple approaches can guarantee loop-free 
operations at each step [12, 14]. Most previous distance-
vector type algorithms free from transient loops and 
convergence problems follow a common structure: Nodes 
exchange update-messages to notify their neighbors of any 
change in their own cost-to-destination (for any destination). 
If the costto-destination decreases at a node, the algorithms 
allow updating its neighbors in an arbitrary manner; these 
updates are called local (asynchronous) updates. However, 
following an increase in the cost-to-destination of a node, 
these algorithms require that the node potentially update all 
its upstream nodes before changing its current successor; 
these are synchronous updates. The main drawbacks of 
Distance Vector are limited scalability due to slow 
convergence time, bandwidth consumption and routing loops. 
 
B. Diffusing Update Algorithm (DUAL) 
DUAL, a part of CISCO’s widely used EIGRP protocol, is 
perhaps the best known algorithm. In DUAL, each node 
maintains, for each destination, a set of neighbors called the 
feasible successor set. The feasible successor set is computed 
using a feasibility condition involving feasible distances at a 
node. Several feasibility conditions are proposed in [8] that 
are all tightly coupled to the computation of a shortest path. 
For example, the Source Node Condition (SNC) defines the 
feasible successor set to be the set of all neighbors whose 
current cost-to-destination is less than the minimum cost-to-
destination seen so far by the node. A node can choose any 
neighbor in the feasible successor set as the successor (next-
hop) without having to notify any of its neighbors and 
without causing a routing loop regardless of how other nodes 
in the network choose their successors, as long as they also 
comply with this rule. If the neighbor through which the cost-
to-destination of the node is minimum is in the feasible 

successor set, then that neighbor is chosen as the successor. If 
the current feasible successor set is empty of does not include 
the best successor, the node initiates a synchronous update 
procedure, known as a diffusing computation (cf. [15]), by 
sending queries to all its neighbors and waiting for 
acknowledgment before changing its successor. Multiple 
overlapping updates—i.e., if a new link-cost change occurs 
when a node is waiting for replies to a previous query—are 
handled using a finite state machine to process these multiple 
updates sequentially. 
 
C. Loop Free Invariance (LFI) Algorithms 
A pair of invariances, based on the costto- destination of a 
node and its neighbors, called Loop Free Invariances (LFI) 
are  introduced in [9] and it is shown that if nodes maintain 
these invariances, then no transient loops can form (cf. 
Section 3.2). Update mechanisms are required to maintainthe 
LFI conditions: [9] introduces Multiple-path Partial-topology 
Dissemination Algorithm (MPDA) that uses a link-state type 
approach whereas [10] introduces Multipath Distance Vector 
Algorithm (MDVA) that uses a distance vector type 
approach. Similar to DUAL, MDVA uses a diffusing update 
approach to increase its cost-to-destination, thus it also 
handles multiple overlapping cost-changes sequentially. The 
primary contribution of  LFI based algorithms such as 
MDVA or MPDA is a unified framework applicable to both 
link-state and distance-vector type approaches and multipath 
routing. 
 
D. Comparative Merits of Previous Algorithms             
DUAL supersedes the other algorithms in terms of 
performance. Specifically, the invariances of MPDA and 
MDVA are based directly on the cost of the shortest path. 
Thus, every increase in the cost of the shortest path   triggers 
synchronous updates in MDVA or MPDA. In constrast, the 
feasibility conditions of DUAL are indirectly based on the 
cost of the shortest path. Consequently, an increase in the cost 
of the shortest path may not violate the feasibility condition 
of DUAL, and therefore may not trigger synchronized 
updates—an important advantage over MDVA or MPDA. 
Because of the importance of this metric, we consider DUAL 
the benchmark against which to compare DIV (cf. Section 4). 
DIV combines advantages of both DUAL and LFI. DIV 
generalizes the LFI conditions, is not restricted to shortest 
path computations and, as LFI-based algorithms, allows for 
multipath routing. In addition, DIV allows for using a 
feasibility condition that is strictly more relaxed than that of 
DUAL, hence triggering synchronous updates less frequently 
than DUAL (and consequently, than MPDA or MDVA) as 
well as limiting the propagation of any triggered synchronous 
updates. The update mechanism of DIV is simple and 
substantially different from that of previous algorithms, and 
allows arbitrary packet reordering/losses. Last but not least, 
unlike DUAL or LFI algorithms, DIV handles multiple 
overlapping cost-changes simultaneously without additional 
efforts resulting in simpler implementation and potentially 
faster convergence. 
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III.   DIV 
A. Overview 
    DIV lays down a set of rules on existing path computation 
algorithms to ensure their loop-free operation at each instant. 
This rule-set is not predicated on shortest path computation, 
so DIV can be used with other path computation algorithms 
as well. For each destination, DIV assigns a value to each 
node in the network. To simplify our discussion and notation, 
we fix a particular destination and speak of the value of a 
node. The values could be arbitrary—hence the independence 
of DIV from any underlying path computation algorithm. 
However, usually the value of a node will be related to the 
underlying objective function that the algorithm attempts to 
optimize and the network topology. Some typical value 
assignments include: (i) in shortest path computations, the 
value of a node could be its cost-to-destination; (ii) as in 
DUAL, the value could be the minimum cost-to-destination 
seen by the node from time t = 0; (iii) as in TORA [13], the 
value could be the height of the node; etc. As in previous 
algorithms, the basic idea of DIV is to allow a node to choose 
a neighbor as successor only if the value of that neighbor is 
less than its own value: this is called the decreasing value 
property of DIV, which ensures that routing loop can never 
form. The hard part is enforcing the decreasing value 
property when network topology changes. Node values must 
be updated in response to changes to enable efficient path 
selection. However, how does a node know the current value 
of its neighbors to maintain the decreasing value property? 
Clearly, nodes update each other about their own current 
value through update messages. Since update messages are 
asynchronous, information at various nodes may be 
inconsistent, which may lead to the formation of loops. This 
is where the non-triviality of DIV lies: it lays down specific 
update rules that guarantee that loops are never formed even 
if the information across nodes is inconsistent. 
 
B.  Description of DIV 
    There are four aspects to DIV: (i) the variables stored at 
the nodes, (ii) two ordering invariances that each node 
maintains, (iii) the rules for updating the variables, and (iv) 
two semantics for handling non-ideal message deliveries 
(such as packet loss or reordering). A separate instance of 
DIV is run for each destination, and we focus on a particular 
destination. The Intermediate Variables suppose that a node x 
is a neighbor of node y. These two nodes maintain 
intermediate variables to track the value of each other. There 
are three aspects of each of these variables: whose value is 
this? who believes in that value? And where is it stored? 
Accordingly, we define V (x;y|x) to be the value of node x as 
known (believed) by node y stored in node x; similarly V(y; 
x|x) denotes value of node y as known by node x stored in 
node x. Thus, node x with n neighbors, {y1,y2,…, yn}, it 
stores, for each destination: 
1. its own value, V (x; x|x); 
2. the values of its neighbors as known to itself, 
V(yi x|x) [yiЄ{y1; y2; : : : ; yn}], 
3. and the value of itself as known to its neighbors  

V (x;yi|x) [yi Є {y1, y2, . . . , yn}]. 
That is, 2n+1 values for each destination. The variables V (yi; 
x|x) and V (x; yi|x) are called intermediate variables since 
they endeavor  to  reflect  the values V (yi; yi|yi) and V (x; 
x|x), respectively. In steady state, DIV ensures that  
(x;x|y)=V(x;yi)=V(x;yi|yi). 
 The Invariances:  DIV requires each node to maintain at all 
times the following two invariances  based on its set of 
locally stored variables. 
Invariance 1:  The value of a node is not allowed to be more 
than the value the node thinks is known to its neighbors. That 
is 
 V (x; x|x) ≤ V (x; yi|x) for each neighbor yi.    (1) 
 Invariance2: A node x can choose one of its neighbors y as a 
successor only if the value of y is less than the value of x as 
known by node x; i.e., if node y is the successor of node x, 
then  
              V (x; x|x) > V (y; x|x).          (2) 
 Thus, due to Invariance 2, a node x can choose a successor 
only from its feasible successor set {yi|V(x;x|x) > V (yi;x|x)}. 
The two invariances reduces to the LFI conditions if the value 
of a node is chosen to be its current cost-to-destination.  
Update Messages and Corresponding Rules: There are two 
operations that a node needs to perform in response to 
network changes: (i) decreasing its value and (ii) increasing 
its value. Both operations need notifying neighboring nodes 
about the new value of the node. DIV uses two corresponding 
update messages, Update::Dec and Update:: Inc, and 
acknowledgment (ACK) messages in response to Update::Inc 
(no ACKs are needed for Update::Dec). Both Update::Dec 
and Update::Inc contain the new value (the destination), and a 
sequence number5. The ACKs contain the sequence number 
and the value (and the destination) of the corresponding 
Update::Inc message. DIV lays down precise rules for 
exchanging and handling these messages which we now 
describe.  
Decreasing Value: Decreasing value is the simpler operation 
among the two. The following rules are used to decrease the 
value of a node x to a new value V0. Node x first 
simultaneously decreases the variables V (x; x|x) and the 
values V (x; yi|x) I =1,2,…,n, to V0, Node x then sends an 
Update::Dec message to all its neighbors that contains the 
new value V0. Each neighbor yi of x that receives an 
Update::Dec message containing V0 as the new value updates 
V (x;yi|yi) to V0. 
Increasing Value: In the decrease operation a node first 
decreases its value and then notifies its neighbors; in the 
increase operation, a node first notifies its neighbors (and 
wait for their acknowledgments) and then increases its value. 
In particular, a node x uses the following rules to increase its 
value to V1: Node x first sends an Update::Inc message to all 
its neighbors. Each neighbor yi of x that receives an 
Update::Inc message sends an acknowledgment (ACK) when 
able to do so according to the rules explained in details below 
(Section 3.2). When yi is ready to send the ACK, it first 
modifies V (x; yi|yi), changes successor if necessary (since 
the feasible successor set may change), and then sends the 
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ACK to x; the ACK contains the sequence number of the 
corresponding Update::Inc message and the new value of V 
(x; yi|yi). Note that it is essential that node yi changes 
successor, if necessary, before sending the ACK. When node  
x receives an ACK from its neighbor  yi, it modifies V (x; 
yi|x) to V1.At any time, node x can choose any value V (x; 
x|x) ≤ V (x; yi||x), I =1,2,…,n. 
Rules for Sending Acknowledgment: Suppose node yi 
received an Update::Inc message from node x. Recall that 
node yi must increase V (x; yi|yi) before sending an ACK. 
However, increasing V (x; yi|yi) may remove node x from the 
feasible successor set at node yi. If node x is the only node in 
the feasible successor set of node yi, node yi may lose its path 
if V (x; yi|yi) is increased without first increasing V (yi; yi|yi). 
Node yi then has two options: (i) first increase V (yi; yi|yi), 
increase V (x; yi|yi), and then send the ACK to node x; or (ii) 
increase V(x; yi|yi), send ACK to node x, and then increase 
V(yi; yi|yi). We call option (i) the normal mode, and option 
(ii) the alternate mode. In the normal mode, node yi keeps the 
old path while it awaits ACKs from its neighbors before 
increasing V(yi;yi|yi), since it keeps x in the feasible 
successor set until  its own value is adjusted appropriately. 
 

IV.   PERFORMANCE EVALUATION 
This section presents simulation results comparing the 
performances of DIV (with normal mode used with DBF to 
compute shortest paths) in terms of routing loops; 
convergence times and frequency of synchronous updates 
against DUAL (cf. Section 2). The performance of DBF 
without DIV is also presented as a reference. The simulations 
are performed on random graphs with fixed average degree of 
5. The numbers of nodes are varied from 10 to 90 in 
increments of 10. For each graph-size, 100 random graphs are 
generated. Link costs are drawn from a bi-modal distribution: 
with probability 0.5 a link cost is uniformly distributed in 
[0,1]; and with probability 0.5 it is uniformly distributed in 
[0,100]. For each graph, 100 random link-cost changes are 
introduced, again drawn from the same bi-modal distribution. 
All three algorithms are run on the same graphs and sequence 
of changes. Processing time of each message is random: it is 
2 s with probability 0.0001, 200 ms with probability 0.05, and 
10 ms otherwise. 

               Fig. 2. Mean convergence time 

Fig. 2. shows average convergence times—the time from a 
cost change to when no more updates are exchanged—for all 
three algorithms as the size of the graphs varies. The vertical 
bars show standard deviations. Both DIV and DUAL 
converge faster than DBF; however, DIV performs better, 
especially for larger graphs. This is because DIV’s conditions 
are satisfied more easily, so that synchronous updates often 
complete earlier (recall that a node with a feasible neighbor 
replies immediately). the fraction of times the condition of 
DIV is satisfied given that SNC is not satisfied; this fraction 
exceeds 80% for larger graphs. 
 

V.    CONCLUSION 
Distance-vector path computation algorithms are attractive 
candidates not only for shortest path computations, but also in 
several important areas involving distributed path 
computations due to their simplicity and scalability. 
Leveraging those benefits, however, calls for eliminating 
several classical drawbacks such as transient loops and slow 
convergence. The algorithm proposed in this paper, DIV, 
meets these goals, and which unlike earlier solutions is not 
limited to shortest path computations. In addition, even in the 
context of shortest path computations, DIV outperforms 
earlier approaches in several key performance metrics, while 
also providing greater operational flexibility, e.g., in handling 
lost or out-of-order messages. Given these many benefits and 
the continued and growing importance of distributed path 
computations, we believe that DIV can play an important role 
in improving and enabling efficient distributed path 
computations.  
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